The cold bleach technique has been around for a very long time. Although it is usually associated with short production runs and average quality, both can be overcome with the proper equipment and correct chemical formulas. The quality of fabric that has been cold bleached does not have to be different from any other bleach process. A good bleach should have the following properties:

(1) Good removal of natural and added impurities as exhibited by low water and hydrocarbon extractables.
(2) Complete removal of motes.
(3) True absorbency resulting in uniform dye and chemical uptake.
(4) Good physical properties, such as high tensile and tear strengths and low fluidity values.
(5) An adequate degree of whiteness that allows the desired shade to be dyed or printed.
(6) Uniform alkalinity

Also, the factors influencing a cold bleach procedure are no different from any other bleach process:

(1) Greige goods
(2) Liquor pickup
(3) Saturation time
(4) Type and efficiency of surfactant
(5) Peroxide/alkali balance
(6) Alkalinity and pH
(7) Reaction temperature
(8) Reaction time
(9) Washer temperature and flow
(10) Type of equipment
In order to come up with a good cold bleach formula, each of the factors listed above and how they differ from hot bleach procedures must be considered. In hot bleach procedures (temperature above 180°F), the chemical concentration increases when the reaction times are lengthened. This is because we are relying on heat as one of the main activators of the bleach. In cold bleach procedure where the reaction temperature is usually below 120°F, the reaction takes place much slower, and the activity of the bleach is more dependent on the chemical concentrations. This is why we have higher alkali and peroxide levels. Due to its slow reaction, a cold bleach procedure is one of the safest procedures that can be used in regard to fiber degradation.

THE MOST COMMON MISTAKES IN COLD BLEACHING

(1) POOR LIQUOR PICKUP yields an insufficient amount of chemicals on the fabric and also an insufficient amount of liquor to saturate and swell the fiber and the size and allow the reaction to take place evenly. In many cases, dye pads are used to pad on the cold bleach solutions. These are almost one dip-one nip pads, which while they allow sufficient saturation time for an absorbent piece of fabric, they do not allow enough time for a piece of greige goods that is virtually water repellent. The addition of rapid wetting agents, de-aerators, pick-up enhancers, slow running speeds, and low nip pressures are things that can be done to ensure a good pickup. While 100% cotton fabrics should pickup at least 100%, polyester/cotton blends will pickup less as the percentage of polyester increases. For example, 80/20 polyester/cotton blends might only pickup 70%. It should be noted that increasing the chemical concentrations to compensate for a low pickup will not always result in a good bleach performance. There is still a need for a sufficient amount of liquor to be present on the fiber.

(2) POOR WASHING can take the best bleach formulas and give a fabric that looks white and clean, but dyes and prints very poorly. All of the impurities that are loosened up by the chemicals, have to be washed free or else they can redeposit on the fabric interfering with subsequent processes. If the washing equipment is suspect, higher water temperatures and flows along with a means to neutralize and residual alkali, are the main things to try. Even if the goods must be run down a wash range twice to ensure a clean fabric, this is less expensive than trying to repair poor dyeings that are the result of poor washing.
(3) **Hydrophilic uniformity:** Due to the exothermic reaction of the chemicals a temperature difference can develop from the inside to outside area of the roll of fabric on the A-frame. Consequently, variations in the degree of whiteness and absorbency can occur. These negative effects can cause difficulties in dyeing, printing, and finishing.

To minimize these irregularities impact of these two critical steps, the following recommendations are suggested:

1. **Impregnation Box**
 A high liquor pick-up is required but the capacity of the box should not be high so that there is a risk of size build up. **MULTIPLUS® NB-100** facilitates delivery of more liquor to the fabric.

2. **Provide an air passage (dwell time) before batching to allow for liquor penetration into the fabric.**

3. **Intensive Scouring**
 The purpose of intensive scouring is to achieve a better removal of the impurities that have become accessible during the bleaching process. This operation is assisted by the addition of a detergent (i.e., **KIERALON® N-DB**, **KIERALON® N-CD** or **KIERALON® MFB**) and a special product containing dispersing and complexing action (i.e., **PRESTOGEN® N-D**). Extraction and dispersing agents (i.e. **DEKOL® N-SN**) are of great benefit during washing. By working with the chemicals carried forth from the cold bleach in conjunction with the rapid cloth temperature elevation via passage through a steamer, maximum removal of cloth impurities extraction can be realized in subsequent wash steps. The addition of small amounts of caustic can also be found to boost whiteness and absorbency. Washing must always be given serious attention.
Starch Removal

Sufficient starch removal from cotton and polyester/cotton goods is one of the more difficult problems for a cold pad bleach. The lack of reaction temperature and proper washing hinder starch removal. Sodium silicate, while aiding whiteness and mote removal, also hinders starch removal. The most efficient formulas for removing starch are those with no sodium silicate, but extra amounts of caustic soda and a small amount of sodium peroxide. When developing a cold bleach formula, a compromise between the degree of whiteness and starch removal has to be reached.

Rotation and Wrapping

The best way to ensure uniformity in a cold bleach is to roll the fabric up on an A-frame, cover it completely in plastic, and slowly rotate it for the entire dwell time. Rotating prevents the excess liquor from settling in one spot. Covering the roll in plastic keeps moisture in and air out. Excess air tends to dry the fabric, which through evaporation can cause the chemicals to become more concentrated which results in fiber damage and uneven results. Wrapping also helps insulate the roll to maintain a more constant temperature throughout the roll.

EQUIPMENT RECOMMENDATIONS

1. Impregnation pad (preferably 2 dip box)
2. Batching or dwell station (rolls or bins)
3. Washing -
 a) Re-impregnation pad
 b) Steamer (if available)
 c) 6 wash boxes

 include water sprays between boxes
 include individual steam to each box
Cold Pad-Batch Bleach Plus Intensive Scour

Cold pad-batch bleach/ Machine : impregnation unit

50 ml/l Hydrogen Peroxide 50%
50 g/l Caustic Soda 50%
(10 ml/l Sodium Silicate)
5 g/l Prestogen® N-D
8 g/l Kieralon® N-DB or Kieralon® MFB
3 g/l Persulfate
1 g/l Multiplus® NB-100

Pad bath temperature: room temperature
Wet Pick-up: 75-100%*
Batch temperature: room temperature
Batch time: 10-24 hours*
* (depending on fabric construction and fiber blend)

Intensive scour/ Machine : open width washer

To achieve the best scouring effects, it is recommended to meter in auxiliaries in the 1st and 2nd wash boxes. The mix is formulated proportional to the wash water feed to maintain the following in the wash box.

1-2 g/l Kieralon® N-DB or Kieralon® MFB
1-2 g/l Dekol® N-SN
Washing temperature: at least 190°F
Cold Pad-Batch Bleach Plus Boil Off

Cold pad-batch bleach/ Machine : impregnation unit

- 50 ml/l Hydrogen Peroxide 50%
- 50 g/l Caustic Soda 50%
- (10 ml/l Sodium Silicate)
- 5 g/l **Prestogen**\(^\text{®}\) N-D
- 8 g/l **Kieralon**\(^\text{®}\) N-DB or **Kieralon**\(^\text{®}\) MFB
- 3 g/l Persulfate
- 1 g/l **Multiplus**\(^\text{®}\) NB-100

Pad bath temperature: room temperature
Wet Pick-up: 75 to 100%*
Batch temperature: room temperature
Batch time: 10-24 hours*
*(depending on fabric construction and fiber blend)

Washing temperature: at least 190°F

Intensive scour/ Machine : combi-steamer

- 80 g/kg Caustic Soda 50%
- 4 g/kg **Kieralon**\(^\text{®}\) N-DB or **Kieralon**\(^\text{®}\) MFB

Pad bath temperature: room temperature
Reaction temperature: 212°C
Reaction time: 15 min.

Washing temperature: at least 190°F
Cold Pad-Batch Bleach Plus Bleach

Cold pad-batch bleach/ Machine : impregnation unit

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ml/l</td>
<td>Hydrogen Peroxide 50%</td>
</tr>
<tr>
<td>50 g/l</td>
<td>Caustic Soda 50%</td>
</tr>
<tr>
<td>(10 ml/l)</td>
<td>Sodium Silicate</td>
</tr>
<tr>
<td>5 g/l</td>
<td>Prestogen® N-D</td>
</tr>
<tr>
<td>8 g/l</td>
<td>Kieralon® N-DB or Kieralon® MFB</td>
</tr>
<tr>
<td>3 g/l</td>
<td>Persulfate</td>
</tr>
<tr>
<td>1 g/l</td>
<td>Multiplus® NB-100</td>
</tr>
</tbody>
</table>

- **Pad bath temperature:** room temperature
- **Wet Pick-up:** 75 to 100%*
- **Batch temperature:** room temperature
- **Batch time:** 10-24 hours*
 (depending on fabric construction and fiber blend)

Washing temperature: at least 190°F

Plus Bleach / Machine : combi-steamer

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 ml/kg</td>
<td>Hydrogen Peroxide 50%</td>
</tr>
<tr>
<td>10 g/kg</td>
<td>Caustic Soda 50%</td>
</tr>
<tr>
<td>5 g/kg</td>
<td>Prestogen® N-D</td>
</tr>
<tr>
<td>3 g/kg</td>
<td>Kieralon® N-DB or Kieralon® MFB</td>
</tr>
</tbody>
</table>

- **Pad bath temperature:** room temperature
- **Reaction temperature:** 212°C
- **Reaction time:** 3-10 min.

Washing temperature: at least 190°F
Cold Pad Batch Bleach Defects

Temperature °F variance

Residual peroxide%
Safety

When using these products, the information and advice given in our Safety Data Sheet should be observed. Due attention should also be given to the precautions necessary for handling chemicals.

We know of no ill effects that could have resulted from using the mentioned products for the purpose for which it is intended and from processing it in accordance with current practice.

According to the experience that we have gained over many years and other information at our disposal, The products noted in this leaflet. do not exert any harmful effects on health, provided that it is used properly, due attention is given to the precautions necessary for handling chemicals, and the information and advice given in our Material Safety Data Sheet are observed.

Important: While the information and data contained in this bulletin are presented in good faith and believed to be reliable, they do not constitute a part of our terms and conditions of sales unless specifically incorporated in our Order Acknowledgment. NOTHING HEREN SHALL BE DEEMED TO CONSTITUTE A WARRANTY, EXPRESS OR IMPLIED, THAT SAID INFORMATION OR DATA ARE CORRECT OR THAT THE PRODUCTS DESCRIBED ARE MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE, OR THAT SAID INFORMATION, DATA OR PRODUCTS CAN BE USED WITHOUT INFRINGING PATENTS OF THIRD PARTIES. THE FOREGOING IS THE BEST INFORMATION BASF HAS ON THIS SUBJECT. WHILE IT IS PRESENTED IN GOOD FAITH AND BELIEVED TO BE ACCURATE AND RELIABLE, BASF MAKES NO RECOMMENDATION, REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO ITS ACCURACY OR THE USE TO WHICH IT IS PUT, OR THE RESULTS OBTAINED THEREBY.

It is the responsibility of those to whom we supply our products to ensure that any proprietary rights and existing laws and legislation are observed.

Note: Material Safety Data Sheet is available upon request.

BASF Corporation, 2000
Colorants and Textile / Leather Chemicals

BASF Canada Inc.
345 Carlingview Drive.
Toronto ON
M9W 6N9
Canada
(416) 675-3611

BASF Corporation
4330 Chesapeake Drive
Charlotte, NC 28266
USA
(704) 392-4313
800-545-4931

BASF Mexicana, S.A de C.V.
Insurgentes Sur 975
Col. Cd. de los Deportes
03710 México, D. F.
México
(5) 325 2709